

Rev.0TF3.30_20240314

2.5G SFP OC-48 LR-2 / STM-16 L16.2 CWDM Transceiver Hot Pluggable, Duplex LC, CWDM DFB, SMF 30dB(100KM), DDM, Multi-Rate

Part Number: FSFP-E7-Cxx-b30DM

Overview

FSFP-E7-Cxx-b30DM Small Form Factor Pluggable SFP transceivers are compliant with the current SFP Multi-Source Agreement (MSA) Specification. There are 18 wavelengths available from 1270nm to 1610nm The high performance uncooled CWDM DFB transmitter and high sensitivity APD receiver provide superior performance for 2.5G Multi-Rate CWDM applications up to SMF 30dB budget optical links.

Applications

- SONET OC-48 / SDH STM-16 @2.5G
- SONET OC-12 / SDH STM-4 @622M
- SONET OC-3 / SDH STM-1 @155M
- Gigabit Ethernet @1.25G
- CWDM Networks

Features

- Compatible with SONET OC-48 LR-2 and SDH STM-16 L16.2
- Compatible with SONET OC-12 LR-2 and SDH STM-4 L4.2
- Compatible with SONET OC-3 LR2 and SDH STM-1 L1.2
- Compatible with IEEE802.3z Gigabit Ethernet
- Compliant with INF-8074i SFP MSA
- Multi-Rate 2.5G / 1.25G / 622M / 155M
- Hot Pluggable
- Uncooled CWDM DFB laser transmitter
- APD receiver
- 18 CWDM Wavelength 1270~1610nm available
- Duplex LC connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8472

1

- Single +3.3V power supply
- Link budget 30dB over SM fiber at 2.5G
- Link distance 100km over SM fiber for 1470~1610nm
- RoHS Compliant

Laser Safety

Rev.0TF3.30_20240314

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	Тѕт	-40	+85	°C
Storage Relative Humidity	RH	5	95	%
Supply Voltage	Vcc	-0.5	+4.0	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temp. (FSFP-E7-Cxx-b30DM)	Тор	0	-	+70	°C
Case Operating Temp. (FSFP-E7-Cxx-b30DMi)	Тор	-40	-	+85	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Supply Current (FSPP-E7-Cxx-b30DM)	Icc			270	mA
Supply Current (FSPP-E7-Cxx-b30DMi)	lcc			300	mA

FICER Technology Co., Ltd. 明虹科技股份有限公司

2F, No.138, Daye Rd., Beitou Dist., Taipei City 11268, Taiwan www.Ficer.com

Transmitter Electro-optical Characteristics

Rev.0TF3.30_20240314

V_{cc}= 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C (FSFP-E7-Cxx-b30DM); T_{OP} = -40 °C to 85 °C (FSFP-E7-Cxx-b30DMi)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate	DR	155	2488		Mb/s	
Optical Launch Power	Po	+2		+5	dBm	1
Optical Center Wavelength (0 °C to 70 °C)	λc	λc-6.5	λc	λc+6.5	nm	
Optical Center Wavelength (-40 °C to 85 °C)	λc	λc-7.5	λc	λc+7.5	nm	
Spectral Width (-20dB)	$\Delta\lambda$			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Optical Extinction Ratio	ER	8.2			dB	
Optical Eye Mask		ITU-T G.957 STM-16				
Relative Intensity Noise	RIN			-120	dB/Hz	
Differential Data Input Swing	Vin	180		1200	mV	
Tx Disable Input Voltage-Low (Tx ON)	TDISV∟	GND		0.8	V	
Tx Disable Input Voltage-High (Tx OFF)	TDISVH	2.0		Vcc	V	
Tx Fault Output Voltage-Low (Tx Normal)	TFLTV∟	GND		0.8	V	
Tx Fault Output Voltage-High (Tx Fault)	TFLTVH	2.0		Vcc	V	

Note1: The optical power is launched into a $9/125\mu$ m single mode fiber.

FICER Technology Co., Ltd. 明虹科技股份有限公司

Receiver Electro-optical Characteristics

Rev.0TF3.30_20240314

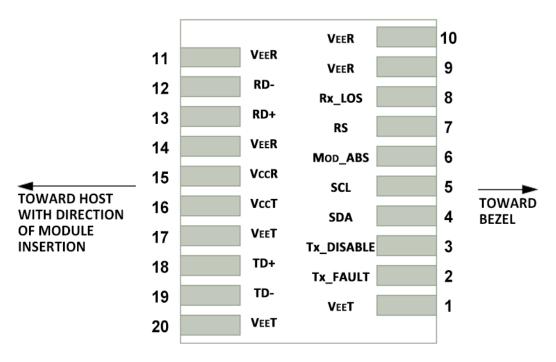
Vcc= 3.13V to 3.47V, ToP = 0 °C to 70 °C (FSFP-E7-Cxx-b30DM); ToP = -40 °C to 85 °C (FSFP-E7-Cxx-b30DMi)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate	DR	155	2488		Mb/s	
Receiver Sensitivity @2488M				-28	dBm	1
Receiver Sensitivity @1.25G	SEN			-31	dBm	2
Receiver Sensitivity @622M	SEIN			-32	nm	3
Receiver Sensitivity @155M				-32	dBm	4
Maximum Receive Power	Prx-max	-7			dBm	1
Optical Center Wavelength	λc	1260		1620	nm	
LOS De-Assert	LOSD			-35	dBm	
LOS Assert	LOSA	-45			dBm	
LOS Hysteresis	LOSHY	0.5			dB	
Differential Data Output Swing	Vout	600		1000	mV	
Receiver LOS Signal Output Voltage-Low	LOSVL	GND		0.8	V	
Receiver LOS Signal Output Voltage-High	LOSVH	2.0		Vcc	V	

Note1: Measured with a PRBS 2²³-1 test pattern @2488Mbps BER<10⁻¹⁰.

Note2: Measured with a PRBS 2⁷-1 test pattern @1.25Gbps BER<10⁻¹².

Note3: Measured with a PRBS 2²³-1 test pattern @622Mbps BER<10⁻¹⁰.


Note4: Measured with a PRBS 2²³-1 test pattern @155Mbps BER<10⁻¹⁰.

TEL+886-2-2898-3830

Pin Assignment

Rev.0TF3.30_20240314

Host PCB SFP Pad Assignment Top View

Pin Description

Pin	Name	Function / Description
1	VEET	Transmitter Ground
2	Tx_FAULT	Transmitter Fault Indication (1)
3	Tx_DISABLE	Transmitter Disable – Turns off transmitter laser output (2)
4	SDA	2-wire Serial Interface Data Line (SDA: Serial Data Signal) (3)
5	SCL	2-wire Serial Interface Clock (SCL: Serial Clock Signal) (3)
6	MOD_ABS	Module Absent, connected to VEET or VEER in the module (3)
7	RS	Rate Select, optional (5)
8	Rx_LOS	Receiver Loss of Signal Indication (4)
9	VEER	Receiver Ground
10	VEER	Receiver Ground
11	VEER	Receiver Ground
12	RD-	Receiver Inverted Data output, AC coupled
13	RD+	Receiver Non-Inverted Data output, AC coupled

Rev.0TF3.30 20240314

14	VEER	Receiver Ground
15	VccR	Receiver 3.3V Power Supply
16	VccT	Transmitter 3.3V Power Supply
17	VEET	Transmitter Ground
18	TD+	Transmitter Non-Inverted Data Input, AC coupled
19	TD-	Transmitter Inverted Data Input, AC coupled
20	VEET	Transmitter Ground

Note1: Tx Fault is open collector/drain output which should be pulled up externally with a $4.7K \sim 10K\Omega$ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

- Note2: Tx Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a $4.7K \sim 10K\Omega$ resistor. 1) Low($0 \sim 0.8V$): Transmitter on; 2) Between(0.8V and 2V): Undefined; 3) High (2.0~ VccT): Transmitter Disabled; 4) Open: Transmitter Disabled.
- **Note3:** These are the module definition pins. They should be pulled up with a $4.7K \sim 10K\Omega$ resistor on the host board to supply less than VccT+0.3V or VccR+0.3V. MOD_ABS is grounded by the module to indicate that the module is present.
- Note4: Rx_LOS (Loss of signal) is an open collector/drain output which should be pulled up externally with a 4.7K~10KΩ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

Note5: No connect on this module.

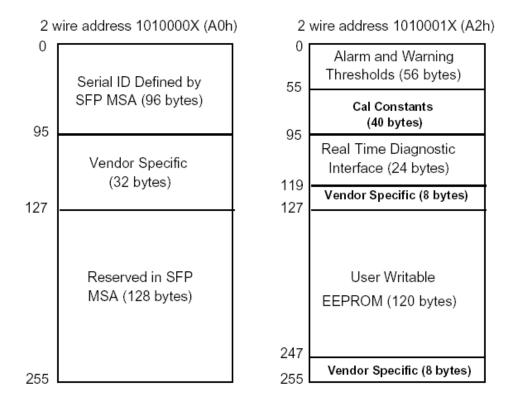
Digital Diagnostic Functions

As defined by the SFP MSA (SFF-8472) Ficer's SFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current •
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized

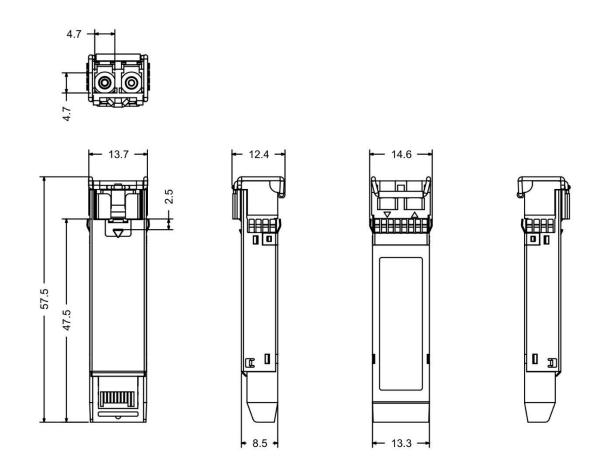


Rev.0TF3.30_20240314

7

as a series of 8-bit data words that can be addressed individually or sequentially. For more detailed information including memory map definitions, please see the SFP MSA (SFF-8472) Specification.

Digital Diagnostic Memory Map


Digital Diagnostic Monitoring Characteristics

Parameter	Accuracy	Unit	Note
Temperature	±3	°C	Internal Calibration
Supply Voltage	±0.1	V	Internal Calibration
Tx Bias Current	±5	mA	Internal Calibration
Tx Output Power	±3	dB	Internal Calibration
Rx Received Optical Power	±3	dB	Internal Calibration

Rev.0TF3.30_20240314

Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

TEL+886-2-2898-3830 FAX+886-2-2898-3840 Sales@Ficer.com Link Fiber to Future

Ordering Information

Rev.0TF3.30_20240314

9

Part No.	Tx (xx=) & Latch Color	Link	DDM	Temp.
FSFP-E7-Cxx-b30DM	27=1270nm, Light Purple 29=1290nm, Sky Blue 31=1310nm, Yellow Green 33=1330nm, Yellow Ocher 35=1350nm, Pink 37=1370nm, Light Brown 39=1390nm, White 41=1410nm, Light Gray 43=1430nm, Black 45=1450nm, Yellow Orange 47=1470nm, Gray 49=1490nm, Purple 51=1510nm, Blue 53=1530nm, Green 55=1550nm, Yellow 57=1570nm, Orange 59=1590nm, Red 61=1610nm, Brown	SMF 30dB	Yes	0~70°C

Note: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.